2,068 research outputs found

    Cell short circuit, preshort signature

    Get PDF
    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event

    On the application of extreme-value statistics to command oriented problems

    Get PDF
    Extreme value theory for estimating statistical parameters of spacecraft communication system

    Fluid-loop reaction system

    Get PDF
    An improved fluid actuating system for imparting motion to a body such as a spacecraft is disclosed. The fluid actuating system consists of a fluid mass that may be controllably accelerated through at least one fluid path whereby an opposite acceleration is experienced by the spacecraft. For full control of the spacecraft's orientation, the system would include a plurality of fluid paths. The fluid paths may be circular or irregular, and the fluid paths may be located on the interior or exterior of the spacecraft

    Nickel-Hydrogen Battery Fault Clearing at Low State of Charge

    Get PDF
    Fault clearing currents were achieved and maintained at discharge rates from C/2 to C/3 at high and low states of charge. The fault clearing plateau voltage is strong function of: discharge current, and voltage-prior-to-the-fault-clearing-event and a weak function of state of charge. Voltage performance, for the range of conditions reported, is summarized

    Fast-field cycling NMR is sensitive to the method of cross-linking in BSA gels

    Get PDF
    This work was supported by ARUK (grant number 19689).Non peer reviewedPublisher PD

    Conceptual modelling: Towards detecting modelling errors in engineering applications

    Get PDF
    Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer “simple” objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems

    Factors associated with postharvest ripening heterogeneity of "Hass" avocados (Persea americana Mill)

    Get PDF
    Indexación: Web of ScienceIntroduction. 'Hass' is the main avocado cultivar commercialized worldwide. The extended flowering period, very low percentage of fruit set and inability to ripen on the tree renders the fruit heterogeneous and unpredictable during postharvest management. The "triggered" and "ready-to-eat" growing markets for 'Hass' avocados are affected by the variable postharvest ripening or ripening heterogeneity which creates severe logistical problems for marketers and inconsistent quality delivery to consumers. Synthesis. The dry matter content, the current avocado harvest index that correlates very well with oil content, has been extensively used to harvest 'Hass' avocados to comply with the minimum standards to guarantee consumer satisfaction. However, previous work and empirical experience demonstrate that dry matter does not correlate on a fruit-to-fruit basis with time to reach edible ripeness. Thus, avocados of very different ages are harvested from individual trees, resulting in heterogeneous postharvest ripening of fruit within a specific batch. Several preharvest factors related to environmental and growing conditions and crop management as well as postharvest technology strategies influence the observed variability of postharvest ripening. Conclusion. Modern approaches based on studying the composition of individual fruits displaying contrasting postharvest ripening behavior, combined with non-destructive phenotyping techniques, seem to offer practical solutions for the fresh supply chain of avocados to sort fruit based on their ripening capacity.http://www.pubhort.org/fruits/2016/5/fruits160045.ht

    Inelastic Neutron Scattering by Gaseous O2

    Full text link
    The magnetic contributions to neutron diffraction by molecular oxygen have been studied both experimentally and theoretically. We extend the theoretical studies by performing a calculation of the magnetic interaction in the inelastic neutron cross section for gaseous O2. The magnetic inelastic cross section for O2 is significantly different from the nuclear inelastic cross section due to the lack of spherical symmetry in the magnetic‐moment distribution about each oxygen nucleus. It is expected from these results that the inelastic cross section for O2 will provide more information about the magnetic‐moment distribution than the angular distribution. We present representative calculations to indicate the size and nature of the magnetic contribution to the inelastic cross section.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71223/2/JCPSA6-49-2-890-1.pd

    Saturation Spectroscopy of Iodine in Hollow-core Optical Fibre

    Get PDF
    We present high-resolution spectroscopy of Iodine vapour that is loaded and trapped within the core of a hollow-core photonic crystal fibre (HC-PCF). We compare the observed spectroscopic features to those seen in a conventional iodine cell and show that the saturation characteristics differ significantly. Despite the confined geometry it was still possible to obtain sub-Doppler features with a spectral width of ~6 MHz with very high contrast. We provide a simple theory which closely reproduces all the key observations of the experiment.Comment: 12 pages, 7 figure
    corecore